
A Metric for Phylogenetic Trees
Based on Matching

Yu Lin, Vaibhav Rajan, and Bernard M.E. Moret

Abstract—Comparing two or more phylogenetic trees is a fundamental task in computational biology. The simplest outcome of such a

comparison is a pairwise measure of similarity, dissimilarity, or distance. A large number of such measures have been proposed, but

so far all suffer from problems varying from computational cost to lack of robustness; many can be shown to behave unexpectedly

under certain plausible inputs. For instance, the widely used Robinson-Foulds distance is poorly distributed and thus affords little

discrimination, while also lacking robustness in the face of very small changes—reattaching a single leaf elsewhere in a tree of any size

can instantly maximize the distance. In this paper, we introduce a new pairwise distance measure, based on matching, for phylogenetic

trees. We prove that our measure induces a metric on the space of trees, show how to compute it in low polynomial time, verify through

statistical testing that it is robust, and finally note that it does not exhibit unexpected behavior under the same inputs that cause

problems with other measures. We also illustrate its usefulness in clustering trees, demonstrating significant improvements in the

quality of hierarchical clustering as compared to the same collections of trees clustered using the Robinson-Foulds distance.

Index Terms—Phylogenetic trees, matching distance, Robinson-Foulds distance, NNI, SPR, TBR.

Ç

1 INTRODUCTION

LEAF-LABELED phylogenetic trees are widely used to
describe evolutionary relationships in biology. Phyloge-

netic trees are often compared to determine how close or far
apart they are. The simplest way to compare two trees is by
defining a pairwise distance measure. Many such distance
measures have been proposed in the literature. But they all
suffer from problems varying from computational cost to
lack of robustness. For instance, similarity measures based
on maximum agreement are too strict, while measures based
on the elimination of rogue taxa work poorly when the
proportion of rogue taxa is significant; distance measures
based on edit distances under simple tree operations (such as
nearest neighbor interchange (NNI) or subtree pruning and
regrafting) are NP-hard; the widely used Robinson-Foulds
(RF) distance, which we discuss in greater detail later, has
poor distribution and thus provides insufficient discrimina-
tion. It is also lacking in robustness—the small change of
reattaching a single leaf somewhere else in a tree of any size
can maximize the distance.

In this paper, we introduce a new pairwise distance
measure for phylogenetic trees. Our metric has interesting
computational and statistical properties: we prove that our
measure induces a metric on the space of trees, show how to
compute it in low polynomial time, and verify through
statistical testing that it is robust. Finally, we note that our
metric does not exhibit the unexpected behavior under the

same inputs that cause problems with other measures. Our
matching metric can be viewed as a weighted extension of
the Robinson-Foulds distance, but can also be interpreted in
the context of tree editing, thus bridging two types of tree-
to-tree measures.

We illustrate the use of our tree metric in clustering trees;
we obtain significant improvements in the quality of
hierarchical clustering as compared to the same collections
of trees clustered using the Robinson-Foulds distance.

2 BACKGROUND

2.1 Similarity, Editing, and Distance

Phylogenetic trees are leaf-labeled trees, most often un-
rooted. Perhaps, the simplest way to quantify the similarity
of a set of phylogenetic trees is to determine the smallest
collection of leaves that, when removed, induce the same
tree (on the remaining leaves) from each tree in the set. Such
an induced tree is called the Maximum Agreement SubTree
(MAST). Several variations have been proposed on this
theme, all seeking to identify a tree structure that is
common, in exact or approximate form, to all trees in the
given set. For a pair of trees, most such measures are fairly
easy to compute. Trees can also be transformed through
various operations that disconnect and reconnect subpieces;
given any collection of such operations, and assuming that
the operations are sufficiently powerful to enable us to
transform any tree on n leaves into any other tree on n
leaves, we can define an edit distance between two trees as
the smallest number of allowed operations that will trans-
form one tree into the other. Computing such edit distances
is typically NP-hard, however, nor is it clear which set of
operations should be used in the characterization. Finally,
we can focus on the characteristics of two trees to determine
the number of differences and thus induce a distance
measure based on outcomes rather than on transformations.
The Robinson-Foulds (RF) distance, the most commonly used
distance measure for trees, counts the number of edges (or,
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equivalently, bipartitions of the leaves) present in one tree,
but not the other; it can be computed in linear time. We now
look at each of these three approaches in turn.

2.2 Tree Similarity Measures

The MAST problem has been well studied [6], [10], [13].
While the general problem of finding the MAST of three or
more trees is NP-hard [2], it can be solved in Oðn lognÞ time
for two binary trees [20]. Since requiring exact agreement
may prove too demanding and lead to poor results, several
authors proposed variations on this formulation, among
them the maximum information subtree (MIST) [4] and the
maximum information subtree consensus (MISC) [17], varia-
tions that are more robust than MAST in the presence of
“rogue” taxa (taxa whose placement in the tree is unclear
and highly variable). These methods work well in the
presence of a small number of rogue taxa, but poorly (both
in terms of running time and of quality of results) when
rogues are numerous; they also work only on sizeable
collections of trees, not on pairs of trees.

2.3 Tree Editing

Editing operations are commonly used to explore tree space
in phylogenetic inference, but also for comparing phyloge-
netic trees. We briefly describe the three most common
operations, in increasing order of generality.

Nearest neighbor interchange. Let e ¼ fu; vg be an
internal edge of a tree T and Su and Sv be the set of
subtrees connected to u and v, respectively. A single NNI
operation interchanges two subtrees across e: it disconnects
one of the subtrees from Su and connects it to vertex v, then
disconnects one of the subtrees from Sv and connects it to
vertex u, as illustrated in Fig. 1.

Subtree prune and regraft (SPR). An SPR operation
disconnects a subtree from the larger tree by removing
some edge fu; vg; the pruned subtree has vertex u, while the
larger tree has vertex v. If the larger tree was binary, then v
now has degree 2 and is eliminated by merging its two
incident edges. Then, the subtree is reconnected to the
larger tree by creating a new vertex w on some edge of the
larger tree and connecting it to the pruned subtree by a new
edge fu;wg, as illustrated in Fig. 1. The Leaf Prune and
Regraft (LPR) operation is the simplified version in which
the subtree pruned always consists of a single leaf.

Tree bisection and reconnection (TBR). Let e ¼ fu; vg be
an internal edge of a tree T and let C1 and C2 be the
components of the tree formed by removing e and (if the
tree was binary) suppressing vertices u and v. Form tree T 0

by choosing one edge in C1 and adding a vertex w along
that edge, choosing one edge in C2 and adding a vertex x

along that edge, and finally adding the edge fw; xg, as
illustrated in Fig. 1. (If any of the components is just a single
vertex, then the newly added edge is attached to the vertex.)

Any tree operation can be used to define an edit distance
between trees: the minimum number of such operations
needed to transform one tree into the other. Regrettably,
computing the edit distance for each of the above three
operations is NP-hard [1], [7], [12]. The NNI edit distance
between two trees is Oðn lognÞ [14] and can be approxi-
mated within a ratio of OðlognÞ [7]. The edit distances
between two trees for SPR and TBR are OðnÞ [1] and there is
a 3-approximation algorithm to compute the TBR edit
distance [22]. The LPR edit distance between two trees on n
leaves is just n minus the number of leaves in the MAST of
those two trees and so can be computed in polynomial time
for two binary trees.

2.4 The Robinson-Foulds Distance

The Robinson-Foulds distance [18] is by far the most widely
used measure of dissimilarity between trees. One of its main
advantages is its independence from any model of tree
editing: it does not infer any series of editing operations, but
relies only on the current characteristics of the two trees.

Every internal edge e in a leaf-labeled tree T defines a
nontrivial bipartition �e on the leaves, and hence the tree T is
uniquely represented by the set of bipartitions �ðT Þ ¼
f�e j e 2 EðT Þg, where EðT Þ is the set of internal edges in
T . For example, the unrooted tree in Fig. 2 is represented by
two nontrivial bipartitions fABjCDE;ABCjDEg induced by
edges e1 and e2, respectively. Given two unrooted leaf-
labeled trees T1 and T2 on the same set of leaf labels, the
Robinson-Foulds distance between them is the normalized
count of the bipartitions induced by one tree and not the
other, that is,

DRF ðT1; T2Þ ¼
1

2
ððj�ðT1Þ � �ðT2ÞjÞ þ ðj�ðT2Þ � �ðT1ÞjÞÞ:

Since there are at most n� 3 nontrivial bipartitions in a tree
on n leaves, the largest possible RF distance between two
trees is n� 3. The RF distance between two trees can be
computed in linear time [8], while the RF distance matrix
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Fig. 1. NNI, SPR and TBR operations.

Fig. 2. An unrooted tree with five leaves.



for a collection of trees can be computed in sublinear time
[16]. However, the RF distance is overly sensitive to some
small changes in the tree. For example, just moving a leaf at
the end of a caterpillar tree (a single spine to which all
leaves are attached) to the other end will create a tree with
the maximum possible RF distance to the original tree, yet
this change takes a single LPR operation. The RF distance
between two random binary trees has a very skewed
distribution [5], [19] in which most values equal n� 3 (also
see Section 4.1 for details).

3 OUR MATCHING DISTANCE

A tree T is uniquely represented by the set of bipartitions
�ðT Þ ¼ f�e j e 2 EðT Þg, where EðT Þ is the set of internal
edges in T . Given two trees, T1 and T2 on the same set of
leaf labels, we define a complete weighted bipartite graph
GðX;Y ;EÞ with X ¼ �ðT1Þ and Y ¼ �ðT2Þ, that is, every
bipartition is represented by a vertex in B. We denote this
graph by BðT1; T2Þ. An edge ðu; vÞ has weight 0 if the
bipartitions u 2 �ðT1Þ and v 2 �ðT2Þ are the same; other-
wise, it has weight 1. We can then rephrase the RF distance
between T1 and T2 as the weight of the minimum-weight
perfect matching in BðT1; T2Þ.

The binary weighting scheme does not make full use of
the information in the bipartitions. Each bipartition �e can
be represented by a binary vector Ve of length n, where n is
the number of leaves in T1 (or T2). For any leaf i, we set
Ve½i� ¼ 1 if leaf i and leaf 1 are on the same side of the
bipartition �e and set Ve½i� ¼ 0 otherwise. We set the weight
of each edge e ¼ fu; vg in BðT1; T2Þ (where vertices u; v in B

represent internal edges in T1 and T2, respectively) to

Wðu; vÞ ¼ minfDHðVu; VvÞ;DHðVu; V vÞg;

whereDH is the Hamming distance between the two vectors
and V , the complement vector of V , is equal to I � V . This
definition is a natural choice since the Hamming distance
between the two bipartitions represents the minimum
number of leaves that must be moved in order to transform
one into the other. The matching distance DMðT1; T2Þ between
trees T1 and T2 is the weight of the minimum-weight perfect
matching in BðT1; T2Þ with the weighting scheme W .

The naive method of computing the weights of edges in
the complete bipartite graph BðT1; T2Þ takes Oðn3Þ time
where n is the total number of leaves in T1 and T2. The time
complexity can be improved to Oðn2Þ by observing that one
needs just a single postorder traversal (of T1 or T2) to
compute the weights of all the edges incident to a vertex in
BðT1; T2Þ. Consider any internal edge e in T1 and let Ve be the
corresponding binary vector that maps each leaf to either 0 or
1. Let n0 and n1 be the number of zeros and ones,
respectively, in this mapping. Apply the same mapping to
the leaves of T2 and root T2 at any internal node. With a single
postorder traversal one can compute the number of leaves
labeled 0 and the number of leaves labeled 1 for every subtree
in T2. For any edge e0 in T2, let l0 be the number of leaves
labeled 0 and let l1 be the number of leaves labeled 1 in the
subtree attached to e0. Then, the weight of the edge between
Ve and Ve0 is minfl1 þ ðn0 � l0Þ; l0 þ ðn1 � l1Þg which can be
computed during the postorder traversal. This is repeated for

each edge in T1 and thus all the weights in BðT1; T2Þ can be
computed in Oðn2Þ time.

The minimum-weight perfect matching problem can be
solved in cubic time [9]. If the input weights are integers and
the value of each weight is not greater than the number of
leaves (as is the case for our matching problem), the running
time of the algorithm can be improved to Oðn5=2logðnÞÞ by
cost scaling and blocking flow techniques [11].

3.1 Basic Properties

First, we show that our distance measure is well defined: it
is indeed a metric.

Lemma 1. The matching distance DM on binary leaf-labeled trees
is a metric.

For any binary trees Ti, Tj and Tk on n labeled leaves, we
have

1. DMðTi; TjÞ � 0.
2. DMðTi; TjÞ ¼ 0 if and only if Ti ¼ Tj.
3. DMðTi; TjÞ ¼ DMðTj; TiÞ.
4. DMðTi; TjÞ þ DMðTj; TkÞ � DMðTi; TkÞ.

Proof. Properties 1, 2, and 3 follow directly from the
definition of the matching distance. We prove Property 4.
Assume Mi;j and Mj;k are the minimum-weight perfect
matchings inBðTi; TjÞ andBðTj; TkÞ. Construct a matching
Mi;k ¼ fðu;wÞjðu; vÞ 2Mi;j ^ ðv; wÞ 2Mi;jg i n BðTi; TkÞ.
SinceDMðTi; TkÞ is the minimum-weight perfect matching
in BðTi; TkÞ, we have

DMðTi; TkÞ �
X

ðu;wÞ2Mi;k

Wðu;wÞ

�
X

ðu;vÞ2Mi;j;ðv;wÞ2Mj;k

ðWðu; vÞ þW ðv; wÞÞ

¼
X

ðu;vÞ2Mi;j

Wðu; vÞ þ
X

ðv;wÞ2Mj;k

Wðv;wÞ

¼ DMðTi; TjÞ þ DMðTj; TkÞ:

tu
Next, we investigate extremal properties of our matching

distance.

Definition 1. Let T ðnÞ be the space of all binary trees on n

labeled leaves. The diameter (�) of T ðnÞ with respect to a
distance metric D on T ðnÞ is defined as

�ðT ðnÞ;DÞ ¼ maxfDðT1; T2Þ j T1; T2 2 T ðnÞg:

Theorem 1.

�ðT ðnÞ;DRF Þ ¼ n� 3;

�ðT ðnÞ;DMÞ ¼ �ðn2Þ:

Proof. We prove the bounds on the diameter by explicitly
constructing two trees T1 and T2. For the RF distance,
choose T1 and T2 to be two caterpillar trees with different
cherries, then no bipartition can appear both in �ðT1Þ and
�ðT2Þ; thus, ðn� 3Þ mismatches result in an RF distance
of ðn� 3Þ. For the matching distance, construct two
caterpillar trees T1 and T2 as shown in Fig. 3. The leaves
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in T1 are ordered as ð1; . . . ; nÞ, and the leaves in T2 are
ordered as ðn; . . . ; n=2þ 1; 1; 2; . . . ; n=2Þ. It is easy to
verify (by case analysis) that each bipartition correspond-
ing to an internal edge along the path between leaf n=8
and leaf 3n=8 in T2 (marked in gray) is at least n=8 away
from every bipartition in T1. Since there are n=4 such
bipartitions in T2, any matching between �ðT1Þ and �ðT2Þ
will have a weight at least ðn=4Þ�ðn=8Þ ¼ �ðn2Þ. The
upper bound is trivial. tu

3.2 Sensitivity to Tree Editing

We now study the change in the distance measures caused
by a single tree editing operation. Let �ðT Þ be the set of trees
derived by applying operation � to a tree T , where � can be
one of NNI, SPR, TBR, LPR, or Leaf Label Interchange (LLI),
this last an operation that does not alter the tree structure,
but simply exchanges the labels of two leaves.

Definition 2. The gradient of a tree rearrangement operation �
with respect to a distance metric D on T ðnÞ is defined as

GðT ðnÞ;D; �Þ ¼ maxfDðT1; T2ÞjT1; T2 2 T ðnÞ; T2 2 �ðT1Þg:

Theorem 2.

GðT ðnÞ;DRF ;NNIÞ ¼ 1;

GðT ðnÞ;DM;NNIÞ ¼ �ðnÞ:

Proof. Let T2 be the tree obtained by applying one NNI
operation on T1. Every NNI operation changes only one
bipartition in �ðT1Þ into a new one in �ðT2Þ (induced by
the internal edge which is selected). Thus, GðT ðnÞ;DRF ;
NNIÞ ¼ 1. Since �ðT1Þ and �ðT2Þ share n� 4 bipartitions,
we can construct a matching M1;2 in BðT1; T2Þ that
contains n� 4 matched pairs with weight zero and 1
matched pair with weight at most n. The sum of the
weights for M1;2 is upper bounded by n, and hence
DMðT1; T2Þ � n. Let e ¼ ðu; vÞ be an internal edge in T1

connecting four rooted subtrees fS1; S2; S3; S4g where S1

and S2 are attached to u and S3 and S4 are attached to v.
Assume each of the four subtrees contains n=4 leaves and
one NNI operation interchanges S2 and S3. The newly
created bipartition by NNI in T2 is now at least �ðnÞ
distance away from all possible bipartitions in T1. So, any
matching in BðT1; T2Þ will have weight at least �ðnÞ.
From the upper and lower bounds, we have GðT ðnÞ;DM;
NNIÞ ¼ �ðnÞ. tu

Theorem 3.

GðT ðnÞ;DRF ; LPRÞ ¼ n� 3

GðT ðnÞ;DM;LPRÞ ¼ �ðnÞ:

Proof. The bound for GðT ðnÞ;DRF ; LPRÞ is derived by
applying LPR to a caterpillar tree T1, where one leaf at
one end of the tree is transposed to the other end of the tree.
Let T2 be the tree obtained by applying one LPR operation
on T1. T2 shares no bipartitions with the tree T1 and the RF
distance between them is n� 3. The matching distance
between T1 and T2 is �ðnÞ since each pair of bipartitions
from �ðT1Þ and �ðT2Þ contributes at least 1 to the matching
weight and there are n� 3 pairs. Because every LPR
operation only affects two internal edges in �ðT1Þ (we
remove an internal edge while pruning and create a new
internal edge while regrafting), there are n� 5 internal
edges left untouched and shared by T1 and T2. We can
construct a matching M1;2 in BðT1; T2Þ that contains
n� 5 matched pairs corresponding to the shared edges
and another two matched pairs. For each matched pair for
the shared edges, the weight is at most 1 since the
corresponding bipartitions can only differ at the pruned
leaf. For the other two matched pairs, the contribution to
the total weight is at most OðnÞ. The weight for this
matching M1;2 is thus bounded by OðnÞ. From the upper
and lower bounds, we have GðT ðnÞ;DM; LPRÞ ¼ �ðnÞ. tu

Theorem 4.

GðT ðnÞ;DRF ; SPRÞ ¼ n� 3;

GðT ðnÞ;DM; SPRÞ ¼ �ðn2Þ:

Proof. The bound for GðT ðnÞ;DRF ; SPRÞ follows from
Theorem 3 since LPR is a special case of SPR and ðn�
3Þ is already the maximum change in RF distance. The
bound for GðT ðnÞ;DM; SPRÞ is obtained from the trees in
Fig. 3, where one SPR operation on T1 results in T2 and
DMðT1; T2Þ ¼ �ðn2Þ. tu

Theorem 5.

GðT ðnÞ;DRF ; TBRÞ ¼ n� 3;

GðT ðnÞ;DM; TBRÞ ¼ �ðn2Þ:

4 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 9, NO. X, XXXXXXX 2012
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Proof. The results follow directly from Theorem 4 since SPR
is a special case of TBR and both gradients have trivial
upper bounds. tu

Theorem 6.

GðT ðnÞ;DRF ; LLIÞ ¼ n� 3;

GðT ðnÞ;DM;LLIÞ ¼ �ðnÞ:

Proof. The bound for GðT ðnÞ;DRF ; LLIÞ is derived by
applying LLI to a caterpillar tree T1, where the labels of
two leaves at two ends of the tree are interchanged. Let
T2 be the tree obtained by applying one LLI operation
on T1. T2 shares no bipartitions with the tree T1, and
the RF distance between them is n� 3. The matching
distance between T1 and T2 is �ðnÞ since each pair of
bipartitions from �ðT1Þ and �ðT2Þ contributes at least 1
to the matching weight and there are n� 3 pairs.
Because every LLI operation only affects two leaves in
T1 and T2, all n� 5 internal edges are left untouched.
We can construct a matching M1;2 in BðT1; T2Þ that
contains those n� 3 matched pairs corresponding to
the shared edges. For each matched pair for the shared
edges, the weight is at most 2 since the corresponding
bipartitions can differ at not more than two leaves. The
weight for this matching M1;2 is thus bounded by OðnÞ.
From the upper and lower bounds, we have
GðT ðnÞ;DM;LLIÞ ¼ �ðnÞ. tu

The ratio of the gradient to the diameter is an indication
of the sensitivity of the distance measure. Our theorems
indicate that the matching distance has the same asymptotic
sensitivity as the RF distance with respect to NNI, SPR, and
TBR, but is more sensitive than the RF distance with respect
to LPR and LLI.

4 EXPERIMENTAL RESULTS

We compare the RF metric and our new distance measure
through extensive simulations. Although one could use
phylogenies from biological data, there is no biologically

motivated measure of distance between two trees and thus
no standard against which one could compare a new
distance measure. Indeed, a distance measure between trees
is just a means to an end and its usefulness is better
compared through simulations where we know the “truth”
and in an indirect way by applications in various contexts.
The previous section gave extremal properties of our
matching distance, but its main advantages are best seen
by comparing its distribution of values to that of the RF
distance. We have not derived an exact formula for the
distribution, but present experimental results that show that
our matching distance on random binary trees yields a
distribution with a fairly broad bell curve, in sharp contrast
to the highly skewed distribution of the RF metric.

We restrict our comparisons to the RF metric for several
reasons. First, the RF metric is the most widely used metric
to compare phylogenies. Second like our matching metric, it
is a “model-free” metric as opposed to the edit distances
that assume some model of tree rearrangement operations.
Thus, both RF and matching metrics are “edge-based”
metrics whereas edit distances compare trees without
considering the correspondence between edges. Third,
computing any of the edit distances is NP-hard and the
approximation algorithms have poor guarantees: the range
of discrimination afforded by the approximations is in-
sufficient to make a fair comparison with another metric.

However we can fairly compare how both RF and
matching metrics correlate with the actual number of
rearrangement operations, for which see section 4.2.

4.1 Distribution of the Tree Distance Metrics

We first study the distribution of RF and matching
distances by sampling pairs of random trees generated in
two different ways. The first, uniformly sampled binary
trees are generated by the randomized leaf attachment
process [19], and the second, birth-death trees are generated
by a uniform, time-homogeneous birth-death process (birth
rate ¼ 0:1, death rate ¼ 0). Fig. 4 shows the distribution of
RF and matching distances for 100,000 pairs of uniformly
sampled binary trees on 100 and 1,000 leaves each and
birth-death trees on 100 leaves. The range of values for each
distance is divided into 100 intervals and each point on the
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x axis represents an interval. Compared to RF (a very
skewed distribution as shown in the Fig. 4 and in [5]), our
matching distance offers a larger range and is more broadly
distributed, and thus also more discriminating.

4.2 Tree Distance Metrics under Tree Editing
Operations

We study the behavior of both RF and matching metrics
under various tree editing operations. For each operation,
we study the change in the distance after successive
applications of the operation. From the distributions of the
two distance metrics in Fig. 4, we expect the RF distance
to saturate faster and the matching distance to have a
better correlation with the number of tree rearrangement
operations.

Our experiments start with 1,000 uniformly generated
binary trees on 1,000 leaves each. We summarize the
average pairwise RF and matching distances between the
trees and the original as a function of the number of
operations applied. Fig. 5 shows RF and matching
distances as a function of the number of NNI operations.
While the RF distance reaches saturation after 10,000 (10n)
operations (n ¼ 1;000), our matching distance still shows
an increasing trend; indeed, the average matching distance
(�30;000) after 100;000 (100n) operations is still far from
the average matching distance (�50;000) between two
randomly selected binary trees on 1,000 leaves (as seen in
Fig. 4). Similar results are shown in Figs. 5 and 6 for SPR,
TBR, and LLI operations—note the very different vertical
scales between the curves for the RF metric and those for
the matching metric.

5 CLUSTERING TREES: AN APPLICATION

In this section, we provide a proof-of-concept study of the
usefulness of the matching distance in clustering phyloge-
netic trees.

Phylogenetic analyses such as maximum-parsimony or
maximum-likelihood analyses often produce many (possi-
bly thousands) of candidate trees that are nearly optimal
with respect to the defined objective function. To obtain a
biologically relevant tree, postprocessing of these candidate
trees is essential. Consensus tree methods are frequently
used to extract the common structure from the candidate
trees and summarize the output; however, these methods
often lose information and are sensitive to outliers. A
different approach divides the set of candidate trees into
several subsets using clustering methods, each cluster being
characterized by its own consensus tree [21]. The authors of
that approach demonstrate an improvement over tradi-
tional consensus methods by obtaining better resolved
output trees and by providing details of the distribution of
the candidate trees.

The efficacy of clustering relies on the dissimilarity
measure used. We conducted two preliminary tests on RF
and matching metrics as dissimilarity measures in cluster-
ing. In each test, we generate 1,000 data sets, each of
200 random binary trees. In the first test, the trees in each
data set are generated by a two-step process. We first
sample two binary trees on k leaves ðk < 100Þ and use them
as two different skeletons. Then, from each of the two
skeletons, a set of 100 trees is generated by adding the rest
of the ðn� kÞ leaves one by one. To add a new leaf, an edge
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Fig. 5. RF (above) and matching (below) distances as a function of the number of NNI operations (left), SPR operations (right) for trees on 1,000
leaves ðn ¼ 1;000Þ.



in the current tree is selected uniformly at random and the
new leaf is attached to that edge. We vary k from 40ð0:4nÞ to
90ð0:9nÞ. In the second test, we begin with two randomly
chosen trees on n ¼ 100 leaves. Each tree in a data set is
generated by performing k LLI operations on one of these
trees. 100 such trees are generated from each of the two
initial trees. We vary k from 10ð0:1nÞ to 40ð0:4nÞ. The
200 trees in each data set are given as input to the clustering
algorithm to check if the algorithm can distinguish the trees
in the two clusters—where trees generated from the same
skeleton are considered to be in the same cluster.

Notice that a MAST-based distance metric can easily
distinguish the input trees into the correct cluster. We
deliberately choose this experimental setup to provide a test
case for the matching distance even in those settings where
a MAST-based distance will perform better than RF.

We apply a standard hierarchical clustering approach
(recommended for phylogenetic postprocessing in [21]) to

the pairwise distance matrices generated by RF and

matching distances. The similarity between clusters C1

and C2 is measured by the following three linkage criteria:

1. Complete linkage: maxfDða; bÞja 2 C1; b 2 C2g.
2. Single linkage: minfDða; bÞja 2 C1; b 2 C2g.
3. Average linkage: 1

jC1kC2j
P

a2C1;b2C2
Dða; bÞ.

A run of the algorithm on a particular data set is

considered to err if it is unable to place every tree generated

from the same skeleton in one cluster. We present, in

Table 1, the error rates obtained from 1,000 such data sets
for each parameter in the first test. For values of k higher

than 0:7n both distance measures perform equally well, but,

as expected, the matching distance has significantly better

performance over a large range of input parameters. Table 2

shows the error rates in the second test. Once again, the

matching distance performs significantly better than RF

distance.
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Fig. 6. RF (above) and matching (below) distances as a function of the number of TBR operations (left), LLI operations (right) for trees on 1,000
leaves ðn ¼ 1;000Þ.

TABLE 1
Error Rates for the First Clustering Test



6 CONCLUSION AND DISCUSSION

We have introduced a new tree metric for phylogenetic
analysis. This metric can be computed efficiently, in
contrast to various edit distances, and offers better
discrimination than the standard Robinson-Foulds dis-
tance, thanks to a much broader and less biased distribu-
tion of distance values. We have given extremal results as
well as experimental results to characterize this new
metric. Finally, we have demonstrated the use of this
metric in clustering trees with an agglomerative hierarch-
ical clustering method, where using our metric consider-
ably improved over using the Robinson-Foulds metric. Our
tree metric can be easily extended to nonbinary trees. We
note that the same metric has been proposed indepen-
dently by Bogdanowicz and Giaro [3] very recently. While
their work provides insights into the mathematical proper-
ties of the metric, our work is focussed on comparing this
metric to the RF distance under various settings: sensitivity
to tree editing operations and clustering. Together, their
work and ours present a compelling case for the new
matching distance.

The key idea in this work is to view the pairwise
distance between trees as a minimum-weight perfect
matching in a complete bipartite graph where the vertices
represent bipartitions of the trees and the edges are
weighted according to some metric. As the RF distance
in this setting uses a binary weighting scheme, we can
extend it by using a richer weighting scheme, from which
in turn the distance measure (the matching) can extract
more information. It will thus be interesting to explore yet
other weighting schemes, in particular, criteria designed to
compare clusterings—since a bipartition is just a 2-
clustering of the leaves. Meila [15] reviewed such criteria
and defined a new information-theoretic criterion, the
Variation of Information (VI). VI measures the amount of
information lost and gained in moving from one bipartition
to another. Since VI is a metric, its induced distance
measure in the matching framework is also a metric. Thus,
a possible direction of research is to check whether a
matching distance based on the VI criterion would reflect
the amount of information lost and gained in moving from
one tree to another.
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